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Abstract

The process of selecting the optimal actuator and sensor lo-
cation for feedback control of the linearized Ginzburg-Landau
equation is considered. We inspect the problem for a single
actuator and a single sensor, with a particular focus on how the
optimal locations vary as the stability of the system, defined in a
suitable way, is changed. By mapping the optimal actuator and
sensor locations with varying system stability, a fundamental
trade-off for this particular flow control problem is made clear.
On the one hand, the actuator and sensor need to each ‘see’
enough of the modes they are trying to control; but on the other
hand, they must also be close enough to each other so that the
time lag, which is the time taken for the effect of the actuation
to be seen at the sensor, is not too large. In particular, we will
see that these two requirements are conflicting, and become in-
creasingly so as the flow is made more unstable. Implications
for effective feedback control with a single sensor and actuator
are discussed.

Introduction

Hydrodynamic stability theory studies the stability of a fluid
system, and it has been used to favourably alter the behaviour
of fluid fields [5]. Altering the behaviour of a flow is known
as flow control, which can either be passive, e.g. the modifica-
tion of a surface profile, or active using some form of energy
supplied via an actuator. The actuator requires an instruction
first, which is supplied by a sensor further upstream. This is
also called an open-loop control setup, where an actuator has
no feedback on how well it performed, therefore it is necessary
to know the exact dynamics of the flow.

Flow control based on control theory, which focuses on closed-
loop dynamics, did not emerge until the late 1990’s. In this case
the sensor is placed downstream of the actuator. The actuator
uses the feedback signal from the sensor to adjust its behaviour
accordingly, thus allowing to compensate for uncertainties, such
as modelling errors or unknown disturbances. The processing
of the received signal sent to the actuator is managed by a con-
troller. The tools provided by control theory are essential when
designing a functional controller, the ultimate goal of the design
process. In flow control, selecting the optimal actuator and sen-
sor type and position is also a crucial part of the design process,
as they have a direct impact on how well the controller can per-
form. This paper aims to understand the physical limitations,
such as time-lag between actuating and sensing, which can lead
to a fluid system that is impossible to control, no matter how
sophisticated a controller is.

Bagheri et al. [2] presented a general framework for closed-loop
flow control studies, based on the Ginzburg-Landau equation,
which will be employed for this paper. The Ginzburg-Landau
equation has been the subject of various studies involving fluid
instabilities in spatially developing flows [8]. The framework
of Bagheri et al.’s review was based on a model employed by
Chomaz et al. [4]. Chen and Rowley [3] used this framework to
implement a H2 optimal controller, similar to Lauga and Bewley

[9], in combination with an iterative gradient-based minimisa-
tion algorithm used by Hiramoto et al. [7] to find the the best
actuator and sensor position for a given flow.

The Ginzburg-Landau equation and controller design are in-
troduced in §The complex Ginzburg-Landau Equation and its
Control, which follows the work of Bagheri et al. and Chen
and Rowley closely. We will show how control changes as the
stability of the system is varied in §Results. §Discussion and
§Conclusions will discuss and summarize the findings and give
recommendations for future control design.

The complex Ginzburg-Landau Equation and its Control

The Ginzburg-Landau Equation is used to model many of the
phenomena occurring in fluid systems for a one-dimensional
spatial domain along the stream-wise direction. A compre-
hensive review of the Ginzburg-Landau equation is given by
Bagheri et al. [2]. Defined on an infinite interval, �• < x < •,
the linearised complex Ginzburg-Landau Equation is:
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q(x, t) = Aq(x, t) (1)

Where q(x, t) < •, as x ! ±•, is the perturbation of the flow,
and A is the Ginzburg-Landau operator; the boundary condi-
tions are q(x,0) = q0(x). The convective and the dissipative
nature of the flow are represented by the complex terms n =
U +2icu and g = 1+ icd , respectively. Dispersion is introduced
into the flow, when both cu and cd are non-zero, which will af-
fect the perturbation velocity, defined as Umax =U +2cucd . The
extra real-valued term µ(x)= µ0�c2

u+µ2x2/2 models exponen-
tial instabilities. These instabilities will cause an unstable re-
gion, where perturbations are amplified, when µ(x) > 0, which
occurs for |x| <

p
�2(µ0 � c2

u)/µ2. The system turns unstable
once the real part of most unstable eigenvalue becomes positive
(l0 > 0). This occurs when µ0 > µc, where µc is the critical
parameter for globally instabilities. The flow is called convec-
tively unstable, while 0 < µ0 < µc. It has an unstable region,
but the advection is strong enough to convect all disturbances
downstream before they can become too large, and as a result
no mode is unstable. In this case the least stable modes will
exhibit transient growth, where they perturbations will initially
grow, but then slowly decay.

For the complex Ginzburg-Landau equation an analytical solu-
tion exists, from which the eigenvalues (ln), eigenmodes (fn)
and adjoint modes (yn) can be generated:

ln = µ0 � c2
u �n2/(4g)� (n+0.5)h (2a)

fn = exp
h
0.5

⇣
nx/g� (cx)2

⌘i
Hn(cx). (2b)

yn = exp [�n̄x/ḡ] f̄n(x). (2c)



Where h =
p
�2µ2g, c = (�µ2/(2g))0.25, n = 0,1, ...N �1, Hn

is the nth Hermite polynomials and ¯(·) is the complex conjugate.
An actuating force u is applied at x = xa, which is employed
with a Gaussian window of variance s to achieve a more real-
istic actuating. An external white noise disturbance d is also
included, so that the equation becomes:

q̇(x, t) = Aq(x, t)+ exp(�((x� xa)/s)2)u(t)+d(x, t) (3)

Knowing all the perturbations is not the case for most control
systems. A single sensor is placed at x = xs, including a Gaus-
sian window, reading the integrated perturbation signal, which
is contaminated by white sensor noise n:

y(t) =
Z •

•
exp(�((x� xs)/s)2)q(x, t)+n(t) (4)

Discretisation

The complex Ginzburg-Landau Equation is discretised along
the spatial domain using Hermite polynomials: q̇ = Aq, where
A is the discretised version of the Ginzburg-Landau operator A .
Expressed in state space form:

q̇ = Aq+Bu+W 1/2d (5a)

y =Cq+V 1/2n (5b)

Where u 2 R, d 2 R, n 2 R and y 2 R are vectors of inputs and
outputs; d and n are set to be white noise signals with covariance
E(dT d) = I and E(nT n) = I. B and C are suitably dimensioned
matrices, representing the actuator and sensor, while W 1/2 and
V 1/2 are scaling factors of the white noise signals. A 2 CN⇥N

is the state matrix, and q(t) 2 RN . A resolution of N = 247
discrete points is chosen, which ensures that the model is con-
verged for all setups in this paper.

H2 optimal control

To control the system, a controller K has to be implemented,
but before we can proceed, it is necessary to define a measure
of control first, such that it is possible to define how well the
closed-loop system is performing. In this case it is desired to
minimise the perturbation magnitude

R •
�• |q(x, t)|2 by finding

the optimal relationship from y(t) to u(t), where u(t) = Ky(t).
At the same time we want to bound the size of |u(t)|2 to avoid
infinitely large actuator magnitudes. Therefore we define a cost
function, J, which represents a weighting of the two signals:

J = E
⇢
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Where b and a are weighting terms and E is the expected value.
This can be expressed in discrete vector format as:

J = E
⇢

lim
t!•
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0
(q⇤Qq+u⇤Ru)dt

�
(7)

Where Q = b2M � 0, R = a2I > 0, and M 2 RN⇥N is a trape-
zoidal integration operator. We can define individual cost oper-
ators J1 = Q1/2q and J2 = R1/2u:

J = E
⇢

lim
t!•
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T

Z T

0
(J⇤1 J1 + J⇤2 J2)dt

�
; z =
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�
(8)
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Figure 1: Block-Diagram of the transfer function G, with P rep-
resenting the plant and K the controller. The inputs are d and n
(blue) and the output is z (red).

Based on the cost function it is possible to find K, such that J is
minimised using Linear Quadratic Gaussian (LQG) control.

We want to quantify how well our controller is working when
disturbances are applied. A transfer function G is intro-
duced, which relates the gain provided by the external inputs
d and n to the weighted signals (z) over all frequencies: z =
G( jw)

⇥
d n

⇤T , shown in figure 1, where P is the plant and K
the controller that we want to design. Taking the transfer func-
tion 2-norm of the G is a sensible measure of how big the output
will be, and therefore how well the controller is performing:

g2 , ||G||2 ,
r

1
2p

Z •

�•
tr(G⇤( jw)G( jw)dw (9)

Simulation parameters

The parameters chosen are shown in table 1, which represent
the supercritical setup used in Chen and Rowley [3], where the
first mode is just unstable. The width of the Gaussian window,
such that the function has fallen to 10% of its peak, is about 1.7,
for the selected variance (s) of the actuator and sensor.

In this case the first mode is just globally unstable, i.e. ¬(l0)>
0, while all other modes are stable. This setup has an unstable
region between �8.6< x < 8.6. The µ0 parameter can be varied
to decrease or increase the stability of the setup. Global instabil-
ity is obtained when µ0 > µc = 0.397. External disturbances are
scaled with W 1/2 = I; a small sensor noise V 1/2 = 2⇥10�4I is
selected, ensuring well-posedness of the LQG controller, while
minimising the effect of sensor noise.

Simulation parameters
U cu cd µ0 µ2 Umax s a b
2 0.2 �1 0.41 �0.01 1.6 0.4

p
2 1 7

Table 1: Parameters for the complex Ginzburg-Landau equation

Actuator and Sensor Placement

With the established framework in place to find an optimal con-
troller for a given actuator and sensor position (xa,xs), we now
want to find their best position in the flow, so that optimal con-
trol can be achieved. Previous studies [1, 2] have placed the
actuator at the peak of the most unstable adjoint mode (y0) and
the sensor at the peak of the most unstable global mode (f0) for
their system. Those are the positions where actuating and sens-
ing are most effective. Figure 2 shows the most unstable adjoint
mode and global mode, peaking at x = {�7,28,7.28} respec-
tively, using the supercritical setup for the complex Ginzburg-
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(a) Optimal placement for µ0 = 0.41:
{xa =�1.130,xs = 1.062}, g2 = 38.5.
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(b) Optimal placement for µ0 = 0.56:
{xa =�1.717,xs = 1.688}, g2 = 66.7.

Figure 3: Contours of log10 g2 for µ0 = {0.41,0.56}, where the innermost contour is log10 g2 = {1.75,2}, and each subsequent contour
increments by 0.25. The grey area represents the unstable region and optimal placement is shown at (⇥)

Landau equation. Giannetti and Luchini [6] take a different ap-
proach, where they use the wavemaker region of the first mode
to place the actuator and sensor. The wavemaker region, which
represents the degree of overlap of the adjoint and global mode,
is shown by the dashed blue line in figure 2, where the ideal
position would be at the centre, {xa = xs = 0}.

Hiramoto et al. [7] use an iterative gradient-minimisation tech-
nique, which considers the differential of the controlled sys-
tem’s H2-norm with respect to xa and xs to find their best loca-
tion for optimal control. This algorithm was improved and ap-
plied to the Ginzburg-Landau equation by Chen and Rowley [3].
They found an optimal position of xa = �1.03 and xs = 0.98,
with g2 = 46.1 for the supercritical setup. Both results lie be-
tween the result of the wavemaker and the adjoint-global-mode
approach. Chen and Rowley concluded that excessive time lag
has a detrimental effect on perturbation control, and therefore
the optimal result is closer to the wavemaker region, compared
to the optimal position for actuating and sensing, when consid-
ered separately. They therefore proposed placing the actuator
and sensor near the origin in the wavemaker region as an initial
condition for iterative function minimisation.
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Figure 2: The first global (f0) and adjoint (y0) eigenmode, rep-
resented by the black and red line respectively (see also equa-
tion 2). Their peaks are represented by the blue dots and their
overlap by the dashed line (wavemaker region). The unstable
domain is shaded grey.

Results

We now consider how the optimal actuator and sensor positions
vary as we vary the stability of the flow. We will first map out g2
over a range of actuator-sensor positions, {�15,�14.75, ...15},
in order to show how g2 varies with the actuator-sensor ar-
rangement (figure 3). This is done for the supercritical setup
(µ0 = 0.41), such that we can validate the result with previous
studies, and repeated for a case where the second mode is su-
percritical (µ0 = 0.56). Finally we will employ the gradient-
minimisation algorithm to find the optimal positions {xa,xs},
as the stability decreases (�0.01  µ0  0.71). This range of µ0
corresponds to a stable system (µ0 = �0.01) through to a sys-
tem with three unstable modes (µ0 = 0.71). The mode-shapes
are not affected by changing the criticality parameter µ0, there-
fore figures 2 and 4 are valid for all cases.

Figure 3a maps the variation of g2 for the supercritical case,
which was also presented by Chen and Rowley [3]. Chen and
Rowley pointed out that a penalty exists for placing the actuator
too far downstream; for placing the sensor too far upstream; and
for placing the actuator and sensor too far away from each other,
which increases the time lag of the feedback loop. This results
in the controller acting on outdated information, which has a
detrimental affect on control performace. The optimal position
for this setup is at xs ⇡ �xa ⇡ 1. This represents a trade-off
between ‘seeing’ enough of the unstable mode on the one hand;
and the corresponding time lag between actuation and sensing
on the other hand.

Figure 3b repeats figure 3a for a larger value of µ0. This reduces
stability by increasing the growth rate and by widening the un-
stable domain. In this case the actuator and sensor have to be
placed farther away from each other for optimal control. Intu-
itively this is reasonable because the unstable domain is wider.
The size of g2 has increased, which indicates a more challeng-
ing control problem, and which can be partly explained by the
larger time-lag. A ‘cliff’ is observable in the contour plot near
{xa ⇡ 0,xs > 0} and {xs ⇡ 0,xa < 0}. In this case mode 2 (fig-
ure 4) is unstable, and controlling it is unavoidable for stability.



Both the second adjoint and global mode have zero magnitude
when x = 0, therefore when placing the actuator or sensor at the
origin, actuating or sensing of the second mode becomes very
challenging. One may ask why control does not become im-
possible in this case? The answer is that both the actuation and
sensing have Gaussian profiles in space (see equations (3,4)),
and therefore sensing and actuation occur not just at x = 0, but
also in its vicinity.

The results in figure 5 show that the distance between the actu-
ator and sensor continuously increases as µ0 is increased, while
the optimal g2 achieved also increases. Increasing µ0 does not
affect the shape or position of the adjoint and global modes, but
it does widen the unstable domain. Subsequent modes are fur-
ther away from the centre, and a wider unstable domain will
cover more of them. Eventually it will become impossible for a
single-actuator single-sensor setup to cover all unstable modes,
leading to an impossible control problem.
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Figure 4: The second global (f1, black line) and adjoint (y1,
red line) eigenmode (see also equation 2). Their peaks are rep-
resented by the blue dots and their overlap by the dashed blue
line. The unstable domain is shaded grey.
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Figure 5: (a) Optimal placement for a range of µ0; and (b) the
corresponding H2-norm. The black lines show where the first
and second mode become unstable. The green lines show the
values used in figure 3.

Discussion and conclusions

There is an important trade-off underlying effective feedback
control of the Ginzburg-Landau equation—at least when a sin-
gle actuator and single sensor are used for control. On the one
hand, the actuator and sensor must be placed in such a way
that they each ‘see’ enough of any unstable or lightly damped
modes. For the supercritical system this means placing the sen-
sor near the peak of the first global eigenmode (which is where
the mode is most observable); and placing the actuator near the

peak of the first adjoint eigenmode (which is where the mode is
most controllable). This is indeed the approach to actuator and
sensor placement taken in a number of previous studies. Cru-
cially, there is a second and equally important consideration:
that the single sensor and actuator are placed close enough to
each other that the corresponding time lag is not excessively
large. This second consideration has been less emphasized in
the literature, with the notable exception of [3], who briefly
comment on its importance.

Given the separation in space of the global and adjoint eigen-
modes that one typically sees (see Figures 2 and 4), these
two considerations are conflicting, and are more conflicting for
higher modes whose global and adjoint eigenmodes are more
well-separated in space. This leads to a fundamental trade-off
when choosing the best position of the actuator and sensor—
fundamental in the sense that it is driven by the underlying
physics of the problem, and no controller, no matter how so-
phisticated, can avoid it.

The primary contribution of the present work is to make plain
this trade-off by exploring the optimal actuator and sensor posi-
tion as the stability of the system—and thus the number of the
global and adjoint eigenmodes at different locations that need
to be controlled—is varied. This is made most clear in fig-
ure 5, where we see that, as µ0 is increased and the positions
of the important global and adjoint eigenmodes become more
spatially separated, i) the optimal actuator and sensor locations
move further away from each other; and ii) the corresponding
best control achieved—characterized by g2—deteriorates.
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